This site provides limited features with JavaScript disabled.














	Products	GroupDocs.Total Product
Family
	GroupDocs.Viewer Product
Solution
	GroupDocs.Annotation Product
Solution
	GroupDocs.Conversion Product
Solution
	GroupDocs.Comparison Product
Solution
	GroupDocs.Signature Product
Solution
	GroupDocs.Assembly Product
Solution
	GroupDocs.Metadata Product
Solution
	GroupDocs.Search Product
Solution
	GroupDocs.Parser Product
Solution
	GroupDocs.Watermark Product
Solution
	GroupDocs.Editor Product
Solution
	GroupDocs.Merger Product
Solution
	GroupDocs.Redaction Product
Solution
	GroupDocs.Classification
Product Solution


	Purchase	Buy Now
	Pricing Information
	Free Trials
	Temporary License
	Policies
	My Orders & Quotes
	Renew an Order
	Upgrade an Order


	Support	Docs
	API Reference
	Live Demos
	Code Samples
	Free Support
	Free Consulting
	Paid Support
	Paid Consulting
	Blog
	Knowledge Base
	New Releases
	Status


	Websites	aspose.com
	aspose.cloud
	aspose.app
	groupdocs.com
	groupdocs.cloud
	groupdocs.app
	conholdate.com
	conholdate.cloud
	conholdate.app
	containerize.com
	codeporting.com
	fileformat.com
	fileformat.app


	About	About Us
	Contact
	Customers
	Legal
	Security
	Events
	Acquisition


	








	
GroupDocs.Editor for .NET	
Product Overview
	
Getting Started	
Features Overview
	
Supported Document Formats
	
System Requirements
	
Installation
	
Licensing and Subscription
	
How to Run Examples


	
Developer Guide	
Introduction
	
Load document
	
Edit document
	
Create new document by format
	
Save document
	
Extracting document metainfo
	
Edit Word document	
Adding class name to input controls
	
Document protection
	
Enabling language information
	
Float and paginal modes
	
Font extraction options
	
Font embedding options
	
Locales for output document
	
Memory optimization option
	
Export styles during document editing
	
Enabling inline CSS styles
	
Output format and password
	
Generating page preview for WordProcessing document


	
Edit PDF document
	
Edit Excel Workbook	
Inserting edited worksheet into existing spreadsheet
	
Generating worksheets (tabs) preview for spreadsheet


	
Edit PowerPoint Presentations	
Inserting edited slide into existing presentation
	
Generating slides preview for presentation


	
How to edit CSV file
	
How to edit XML file
	
How to edit e-Book file
	
How to edit Mobi file
	
Edit text files
	
Edit Email documents
	
Working with formats
	
Working with HTML resources
	
Edit Markdown documents
	
Working with EditableDocument	
Get HTML markup in different forms
	
Save HTML to folder
	
Working with resources
	
Create EditableDocument from file or markup
	
Saving EditableDocument to stream


	
Migration Notes


	
Showcases
	
Technical Support



	GroupDocs Documentation




	/
	GroupDocs.Editor Product Family

	/
	GroupDocs.Editor for .NET

	/
	Developer Guide

	/
	Edit PDF document

Edit PDF
Leave feedback
On this page
	Introduction
	In two words
	Loading
	Editing
	Saving
	Obtaining PDF document info
	Extended info	EnablePagination in save options
	Different output formats




This example demonstrates the standard open-edit-save pipeline with PDF documents, using different options on every step.

Introduction


The PDF documents, or documents in a Portable Document Format, developed by Adobe Corp, are widely used over all Internet and document management systems. PDF format has a crucial distinction from other formats such as DOCX, TXT, or HTML/CSS — it is a so-called fixed-layout format. The main purpose of PDF is to be platform-independent and store the exact representation of a document, — wherever and whenever this document is opened, it should provide the per-character and even a per-pixel fidelity. This means that a document, once created, is “baked” in terms of its representation and editability. While you can freely edit any DOCX document by adding, removing or moving any part of its content, and page layout is organically updated to fit newly added paragraphs or images (or pages are collapsed when text and other content is removed from the beginning or the middle of the document), the PDF documents sustain “frozen”. PDF documents have pages, but every word, character, pixel is strictly bound to every page and cannot be moved. In fact, PDF format doesn’t contain the definitions of paragraphs, titles, sentences, words and even letters — internally PDF document consists of pages, where every page contains a set of glyphs (visual character), where every glyph has coordinated where it is located on this page. Same for images and other visual elements. Words, text blocks, paragraphs and so on, visually identifiable by the users, who open PDF in some viewer like Adobe Reader, are nothing more than a set of symbols, displaced by coordinates over all the page to be “like a text”. For example, tables are nothing more than a set of the drawn lines to form a visual grid with glyphs, drawn in its cells. From this point of view, PDF format is much closer to raster or vector images like JPEG, PNG, or SVG, then to “truly” text documents like DOCX or TXT.
Concluding:
	Editing the PDF documents like ordinary DOCX, TXT, or HTML is an extremely difficult and complex task.
	Quality of editing the PDF document may be very close to what we can do with usual text documents, but it will never be 100%, especially when input PDF has quite complex formatting and content.
	Due to the complexity of PDF format and a process of making it editable, this operation requires a lot of processing time and memory.

From its emergence the GroupDocs.Editor for .NET had no support for editing the PDF documents. But starting from the version 22.7 we finally released this possibility! And this article explains in detail how to edit PDF document of any complexity like an ordinary text or WordProcessing document.
Important note!
Note

GroupDocs.Editor for .NET version 22.7 is distributed for three platforms/runtimes: .NET Framework 2.0, .NET Framework 4.6.1 and .NET Standard 2.0. Ability to edit PDF documents is available only for the .NET Framework 4.6.1 and higher, or .NET Standard 2.0 and higher.

In two words


Editing of the PDF documents is the same as editing any other documents:
	Load a PDF document to the GroupDocs.Editor.Editor class with GroupDocs.Editor.Options.PdfLoadOptions, specify a password if needed.
	Edit a document using GroupDocs.Editor.Editor.Edit() method with PdfEditOptions and obtain an instance of EditableDocument.
	Send a document content to the client-side, edit it there with WYSIWYG-editor, send modified (edited) content back to the server-side.
	Create an instance of EditableDocument with modified content and call an GroupDocs.Editor.Editor.Save() using PdfSaveOptions.

Short code example below:
//0. Simple preparations of input data
const string filename = "NET_Framework-protected.pdf";
const string password = "password";
string inputPath = System.IO.Path.Combine(Common.TestHelper.PdfFolder, filename);

//1. Create a load options class with password
GroupDocs.Editor.Options.PdfLoadOptions loadOptions = new PdfLoadOptions();
loadOptions.Password = password;

//2. Create edit options and tune/adjust if necessary
GroupDocs.Editor.Options.PdfEditOptions editOptions = new PdfEditOptions();
editOptions.EnablePagination = true;//enable pagination for per-page processing in WYSIWYG-editor
editOptions.Pages = PageRange.FromStartPageTillEnd(3);//edit not all pages, but starting from 3rd and till the end

//3. Create Editor instance, load a document
GroupDocs.Editor.Editor editor = new Editor(inputPath, delegate () { return loadOptions; });

//4. Edit a document and generate EditableDocument
GroupDocs.Editor.EditableDocument originalDoc = editor.Edit(editOptions);

//5. Generate HTML/CSS, send it to WYSIWYG, edit there...and obtain edited version
string originalContent = originalDoc.GetEmbeddedHtml();
string editedContent = originalContent.Replace(".NET Framework", "I love Java!!!");

//6. Generate EditableDocument from edited content
EditableDocument editedDoc = EditableDocument.FromMarkup(editedContent, null);

//7. Create and adjust save options
GroupDocs.Editor.Options.PdfSaveOptions saveOptions = new PdfSaveOptions();
saveOptions.Compliance = PdfCompliance.Pdf20;

//8. Save to a file or a stream
string outputPath = System.IO.Path.Combine(Common.TestHelper.OutputFolder, filename);
editor.Save(editedDoc, outputPath, saveOptions);

//9. Don't forget to dispose all resources
originalDoc.Dispose();
editedDoc.Dispose();
editor.Dispose();


Loading


Class GroupDocs.Editor.Options.PdfLoadOptions is responsible for loading the PDF files into the GroupDocs.Editor.Editor. It has only one property — a Password of a string type. By default it is a null — no password is specified. This property is vital when an input document is encoded with a password. If a document is not encoded — property value is ignored whether it was specified or not.
Actually, when input PDF is not password-protected, the PdfLoadOptions is not necessary at all — the GroupDocs.Editor will automatically detect the PDF format and apply the default PdfLoadOptions by itself. However, specifying even default PdfLoadOptions will speed-up the document processing, because in this case the GroupDocs.Editor will not spend the processing time for the automatic format detection routine.
//Creating the default PDF loading options
PdfLoadOptions loadOptions = new PdfLoadOptions();

//Setting a password
loadOptions.Password = "some_password";

string inputPdfPath = System.IO.Path.Combine(Common.TestHelper.PdfFolder, "NET_Framework-protected.pdf");

//Loading a PDF without PDF load options
Editor editor1 = new Editor(inputPdfPath);

//Loading a PDF with PDF load options
Editor editor2 = new Editor(inputPdfPath, delegate () { return loadOptions; });


Editing


Like for other format families in GroupDocs.Editor, there is a special GroupDocs.Editor.Options.PdfEditOptions class for editing the PDF documents. This class has no its own members — instead it implements a FixedLayoutEditOptionsBase abstract class, which is common for PDF and XPS formats (because they are very close in their purpose and idea).
The next properties are inherited from the FixedLayoutEditOptionsBase:
	Boolean flag SkipImages. By default if has a false value — images are not skipped and are preserved. However, if you need only textual information from the document, you can set this flag to true.

	Boolean flag EnablePagination. It has the exact meaning as the same flag in the WordProcessingEditOptions. This flag sets the document conversion mode: the float (default value is false) or paginal (true). For the PDF and XPS documents it means the same:


	When the float mode is selected, the document content will be converted to a pageless (float) HTML document, where there is only a single page (like any common web-document).

	When the paginal mode is selected, the pages of the document will be preserved in the generated HTML document, like it can be seen in the PDF viewer like Adobe Reader.
Actually, the relevance and necessity of this mode relies mostly on your WYSIWYG-editor.



	Pages property of the PageRange type. PageRange is an immutable struct, that holds a page range of any document, without relation to the specific document. And the Pages property through a PageRange struct allows setting a page range, which should be processed. By default all the pages of the input document are processed (PageRange.IsDefault == true). You can choose the different ways to set a page range using different static methods from a PageRange struct. Also pay attention — in PageRange pages are specified via page numbers, not via indexes, so they are 1-based, but not 0-based.

When the instance of a PdfEditOptions class is created and adjusted, you can pass it to the Editor.Edit(PdfEditOptions editOptions) method and obtain an instance of EditableDocument class, which is ready for generating HTML/CSS markup and sending it to the client-side.
By the way, if a default PdfEditOptions instance is acceptable for you, i.e. you do not want to adjust its settings, you allowed to omit PdfEditOptions creating at all — just call the Editor.Edit() parameterless overload and the GroupDocs.Editor will internally generate and apply the default PdfEditOptions for the input PDF document.
Code sample below demonstrates all described in details:
//0. Prepare path to your input PDF file
const string filename = "Comparison for .NET.pdf";
string inputPdfPath = System.IO.Path.Combine(Common.TestHelper.PdfFolder, filename);

//1. Create Editor instance - we do not use PdfLoadOptions here
Editor editor = new Editor(inputPdfPath);

//2. Edit PDF document with default PdfEditOptions - no need to create and pass PdfEditOptions explicitly
EditableDocument originalDefaultDoc = editor.Edit();

//3. Create and adjust PdfEditOptions for advanced edit

//3.1. Create instance of PdfEditOptions class with specified pagination mode (enabled)
PdfEditOptions editOptions = new PdfEditOptions(true);

//3.2. Set to skip images - now they will be omitted during processing
editOptions.SkipImages = true;

//3.3. Set a page range - only second and third pages (input document initially has 4 pages)
editOptions.Pages = PageRange.FromStartPageWithCount(2, 2);//don't forget that page numbers are 1-based

//4. Edit the same PDF document with tuned edit options
EditableDocument tunedDoc = editor.Edit(editOptions);


Saving


Like for other document formats, there is a special class that is responsible for saving the PDF documents — a GroupDocs.Editor.Options.PdfSaveOptions class, which implements ISaveOptions interface.
This class has the next properties:
	String property Password — allows to protect the output PDF document with a specified password. By default is null — password-protection is not applied. When specified and is not a null or empty string, then the output PDF will be encrypted with RC4 (key length of 128 bit).

	Compliance property allows setting the PDF standards compliance level for output PDF. It has an enum type PdfCompliance, each value represents one specific PDF compliance level. By default is a PDF 1.7 (ISO 32000-1) standard.

	OptimizeMemoryUsage boolean flag, that allows to modify the process of generation of an output PDF document from an EditableDocument instance in such a way that this process will take a lesser memory consumption at the cost of the longer processing time. By default it has a false value, which means that the memory optimization is disabled for the sake of better performance. In case of extremely huge documents, enabling this property is vital in order to cope with OutOfMemoryException, especially on 32-bit processes.

	FontEmbedding property of FontEmbeddingOptions type is responsible for embedding the font resources into the resultant PDF document. FontEmbeddingOptions is an enum that has several values, which allow to control which fonts should be embedded into PDF. By default fonts are not embedded at all (NotEmbed). When specifying the EmbedAll enum value, all used fonts in the document will be embedded inside the resultant PDF. When specifying the EmbedWithoutSystem — only those fonts, which are absent in the current operating system (where the GroupDocs.Editor is running).


Unlike the PdfLoadOptions and PdfEditOptions, which are optional when they are default (may be omitted during loading and editing respectively), the PdfSaveOptions is mandatory even if all its values are default.
Code sample below shows all necessary preparations (load and edit operations) and then saving in details.
//0. Prepare path to your input PDF file
const string filename = "Comparison for .NET.pdf";
string inputPdfPath = System.IO.Path.Combine(Common.TestHelper.PdfFolder, filename);

//1. Create Editor instance - we do not use PdfLoadOptions here
Editor editor = new Editor(inputPdfPath);

//2. Edit PDF document with default PdfEditOptions - no need to create and pass PdfEditOptions explicitly
EditableDocument originalDoc = editor.Edit();

//3. Generate HTML/CSS/resources, send to WYSIWYG-editor, edit there, send back to server and create EditableDocument... omitted here
EditableDocument editedDoc = originalDoc;//just use the same in the sake of simplicity

//4. Prepare PDF save options:
//4.1. Create instance
Options.PdfSaveOptions saveOptionsAdjusted = new PdfSaveOptions();
//4.2. Adjust properties
saveOptionsAdjusted.Password = "some_password";//protect output PDF with password
saveOptionsAdjusted.FontEmbedding = FontEmbeddingOptions.EmbedAll;//set font embedding - all used
saveOptionsAdjusted.Compliance = PdfCompliance.Pdf20;//set a PDF 2.0 (ISO 32000-2) standard compliance
saveOptionsAdjusted.OptimizeMemoryUsage = true;//set memory optimization on

//5. Create an output stream and save to it
using (System.IO.MemoryStream outputStream = new MemoryStream())
{
	editor.Save(editedDoc, outputStream, saveOptionsAdjusted);
}

//6. Create another, default at this time, PDF save options
Options.PdfSaveOptions saveOptionsDefault = new PdfSaveOptions();

//7. Save to the file path at this time
string outputPdfPath = System.IO.Path.Combine(Common.TestHelper.OutputFolder, filename);
editor.Save(editedDoc, outputPdfPath, saveOptionsDefault);

//8. Don't forget to dispose all
originalDoc.Dispose();
editedDoc.Dispose();
editor.Dispose();


In this example we’ve created two output PDF files with different PDF saving options from one source EditableDocument, and saved them to the two distinct storages (memory and disk).
Obtaining PDF document info


Article Extracting document metainfo describes the GetDocumentInfo() method, that allows to detect the document format and extract its metadata without editing it. Actually, after adding PDF support to the GroupDocs.Editor, this mechanism also works with PDF documents.
When the GetDocumentInfo() method is called for the Editor class instance that is loaded with a PDF document, the method will return a GroupDocs.Editor.Metadata.FixedLayoutDocumentInfo instance — it is a common class for all fixed-layout documents, PDF and XPS in particular.
As all IDocumentInfo implementations, it has four properties:
	Format property of Formats.FixedLayoutFormats type. For PDF documents it always is a FixedLayoutFormats.Pdf.
	PageCount property of integer (Int32) type. Returns a number of pages.
	Size property of a long integer (Int64) type. Returns a file size in bytes.
	IsEncrypted property of a Boolean type. For the password-encoded documents it returns true, and false otherwise. For XPS files it always returns false, because the XPS format doesn’t support encryption.

As usual, if the input PDF, loaded into the Editor class, is encoded, then its correct password should be specified in the GetDocumentInfo() method. If PDF is not encoded, then the value of the GetDocumentInfo() is ignored.
Important note!
Note

Unlike the editing process, the extraction of metadata from PDF doesn’t require the .NET Framework 4.6.1 and higher, or .NET Standard 2.0 and higher — it is supportable from the lowest .NET Framework 2.0.

The code example below demonstrates the extracting metadata from two PDFs: first one is unprotected, while second - protected.
//0. Prepare path to your input unprotected and protected PDF files
const string filenameUnprotected = "Comparison for .NET.pdf";
const string filenameProtected = "NET_Framework-protected.pdf";
string inputPdfUnprotectedPath = System.IO.Path.Combine(Common.TestHelper.PdfFolder, filenameUnprotected);
string inputPdfProtectedPath = System.IO.Path.Combine(Common.TestHelper.PdfFolder, filenameProtected);

//1. Create two Editor instances - we do not use PdfLoadOptions here
Editor editorUnprotected = new Editor(inputPdfUnprotectedPath);
Editor editorProtected = new Editor(inputPdfProtectedPath);

//2. Extract metadata: do not specify a password (null value instead) for the 1st, and DO specify for the 2nd
GroupDocs.Editor.Metadata.IDocumentInfo unprotectedPdfInfo = editorUnprotected.GetDocumentInfo(null);
GroupDocs.Editor.Metadata.IDocumentInfo protectedPdfInfo = editorProtected.GetDocumentInfo("password");

//3. Cast it if necessary and check properties
GroupDocs.Editor.Metadata.FixedLayoutDocumentInfo castedUnprotected = (FixedLayoutDocumentInfo)unprotectedPdfInfo;
Assert.AreEqual(4, castedUnprotected.PageCount);
Assert.IsFalse(castedUnprotected.IsEncrypted);
Assert.AreEqual(246298, castedUnprotected.Size);
Assert.AreEqual(Formats.FixedLayoutFormats.Pdf, castedUnprotected.Format);

Assert.AreEqual(14, protectedPdfInfo.PageCount);
Assert.IsTrue(protectedPdfInfo.IsEncrypted);
Assert.AreEqual(1016198, protectedPdfInfo.Size);
Assert.AreEqual(Formats.FixedLayoutFormats.Pdf, protectedPdfInfo.Format);


Extended info


EnablePagination in save options


In the previous versions of the GroupDocs.Editor the PdfSaveOptions contained an EnablePagination boolean flag. Starting from the version 22.7 this flag was marked as Obsolete and its value is ignored whether it was specified by the user or was left intact. This was done by the improvements of the backward converter, which generates the output PDF from EditableDocument. Now the backward converter automatically detects the content in the obtained EditableDocument — if it was generated with the EnablePagination flag set to true in PdfEditOptions, then pagination will be applied to the output PDF, and same for the false value.
If you’re using the GroupDocs.Editor version older then 22.7, you should specify the EnablePagination flag manually and in accordance with the value of the same flag in the PdfEditOptions: if EnablePagination in PdfEditOptions is set to true, then in the PdfSaveOptions it should also be true; same for false.
Starting from the version 23.2 the EnablePagination flag was completely removed from the PdfSaveOptions class, so please update your code while migrating from the older versions to the newer.
Different output formats


Keep in mind that, when input PDF was edited and you’re going to save it, it is not necessary to save it exactly in the PDF format — you are free to choose any compatible format, like all WordProcessing formats, or text format, or eBook format.
Code example below shows editing a PDF file and then saving the edited content to three different files in different formats.
//0. Prepare path to your input PDF file
const string filename = "Comparison for .NET.pdf";
string inputPdfPath = System.IO.Path.Combine(Common.TestHelper.PdfFolder, filename);

//1. Create Editor instance - we do not use PdfLoadOptions here
Editor editor = new Editor(inputPdfPath);

//2. Edit PDF document with default PdfEditOptions - no need to create and pass PdfEditOptions explicitly
EditableDocument originalDoc = editor.Edit();

//3. Generate HTML/CSS/resources, send to WYSIWYG-editor, edit there, send back to server and create EditableDocument... omitted here
EditableDocument editedDoc = originalDoc;//just use the same in the sake of simplicity

//4. Prepare PDF save options
Options.PdfSaveOptions pdfSaveOptions = new PdfSaveOptions();
pdfSaveOptions.Compliance = PdfCompliance.PdfA2a;

//5. Prepare DOCX save options
Options.WordProcessingSaveOptions docxSaveOptions = new WordProcessingSaveOptions(Formats.WordProcessingFormats.Docx);

//6. Prepare TXT save options
Options.TextSaveOptions txtSaveOptions = new TextSaveOptions();
txtSaveOptions.PreserveTableLayout = true;

//7. Save to PDF format to the stream
using (MemoryStream pdfStream = new MemoryStream())
{
	editor.Save(editedDoc, pdfStream, pdfSaveOptions);
}

//8. Save to DOCX format to the stream
using (MemoryStream docxStream = new MemoryStream())
{
	editor.Save(editedDoc, docxStream, docxSaveOptions);
}

//9. Save to TXT format to the stream
using (MemoryStream txtStream = new MemoryStream())
{
	editor.Save(editedDoc, txtStream, txtSaveOptions);
}

//10. Dispose all resources
editedDoc.Dispose();
originalDoc.Dispose();
editor.Dispose();


Was this page helpful?
Not really
Yes, thanks

Any additional feedback you'd like to share with us?
Skip
Send

Please tell us how we can improve this page.
Skip
Send

Thank you for your feedback!
We value your opinion. Your feedback will help us improve our documentation.


On this page
	Introduction
	In two words
	Loading
	Editing
	Saving
	Obtaining PDF document info
	Extended info	EnablePagination in save options
	Different output formats







	Products
	Support
	Websites
	About


© Groupdocs 2001-2023. All Rights Reserved.
	Privacy Policy
	Terms of use
	Contact




